2重反転翼列のCFD解析 --様流れ中の翼列周辺流れ構造の解明-

2007年 4月 28日

水車翼列の最適設計に関する指針

2. 移動境界CFDの解析手法

手法	長所	短所		
Euler	簡単な定式化, 計算コスト少	形状表現に難がある, 格子生成ソフトが無い		
ALE	形状表現への柔軟性, 格子生成ソフトが豊富	計算コスト大, リメッシュ・リゾーン時の物 理量割り当てが困難		
Multi Grid	簡単な定式化	複数の移動物体の取り扱 いは困難,計算コスト大		

表. 各手法の得失

4. Super Cartesian法の定式化

<基礎方程式>

該当する体積占有率Vf,開口率Ax, Ay, AZを任意に時間変化させる

◆運動方程式(Navier-Stokes方程式):

 $\partial (\mathbf{u} \vee \mathbf{f}) / \partial \mathbf{t} + \mathbf{u} \mathbf{A} \mathbf{x} (\partial \mathbf{u} / \partial \mathbf{x}) + \mathbf{v} \mathbf{A} \mathbf{y} (\partial \mathbf{u} / \partial \mathbf{y}) + \mathbf{w} \mathbf{A} \mathbf{z} (\partial \mathbf{u} / \partial \mathbf{z})$ $= \vee \mathbf{f} \cdot (-\partial \mathbf{P} / \partial \mathbf{x} + (\mu / \rho) \nabla^2 \mathbf{U} | \mathbf{x} + \mathbf{F} \mathbf{x})$ $\partial (\mathbf{v} \vee \mathbf{f}) / \partial \mathbf{t} + \mathbf{u} \mathbf{A} \mathbf{x} (\partial \mathbf{v} / \partial \mathbf{x}) + \mathbf{v} \mathbf{A} \mathbf{y} (\partial \mathbf{v} / \partial \mathbf{y}) + \mathbf{w} \mathbf{A} \mathbf{z} (\partial \mathbf{v} / \partial \mathbf{z})$ $= \vee \mathbf{f} \cdot (-\partial \mathbf{P} / \partial \mathbf{y} + (\mu / \rho) \nabla^2 \mathbf{U} | \mathbf{y} + \mathbf{F} \mathbf{y})$ $\partial (\mathbf{w} \vee \mathbf{f}) / \partial \mathbf{t} + \mathbf{u} \mathbf{A} \mathbf{x} (\partial \mathbf{w} / \partial \mathbf{x}) + \mathbf{v} \mathbf{A} \mathbf{y} (\partial \mathbf{w} / \partial \mathbf{y}) + \mathbf{w} \mathbf{A} \mathbf{z} (\partial \mathbf{w} / \partial \mathbf{z})$ $= \vee \mathbf{f} \cdot (-\partial \mathbf{P} / \partial \mathbf{z} + (\mu / \rho) \nabla^2 \mathbf{U} | \mathbf{z} + \mathbf{F} \mathbf{z})$

◆連続の式:

 $\partial (\sqrt{f}) / \partial t + Ax(\partial u / \partial x) + Ay(\partial u / \partial y) + Az(\partial u / \partial z) = 0$

5. 二重反転翼列の基本概念

① c(翼弦長) = 0.15m

② d(翼弦上前縁から1/4弦長点間隔) = 2c、1.5c

③ h(1/4弦長点間隔) = 0.6m

(C *μ* =0.09, L=2.4)

- ⑤ Vt(並進速度) = 5.0m/sec (回転半径0.3m、回転数160rpm)3.125m/sec (回転半径0.3m、回転数100rpm)
- ⑥ θ(ピッチ角: Vnと翼弦線との成す角度) = 60°
 ピッチは1/4翼弦点を中心に回転。

なお、乱流モデルは標準 $k-\varepsilon$ 2方程式モデルを使用した。

7. 翼形データのインポート

図, 翼形データ

11. 翼列モーションチェック

速度ベクトル図 (左端)

24. 計算結果 ④幅1.5c, 100RPM

速度分布図(全体)

圧力分布図(全体)

25. 計算結果 ④幅1.5c, **100**RPM

Title:Geometry,速度絶対値分布バース図 2平面:Z = 1 0.0500000

圧力分布図(右端)

26. 計算結果 ④幅1.5c, 100RPM

速度ベクトル図 (左端)

30. 各ケースの揚力・抗力

	揚力	揚力係数	ない 抗力	抗力係数			
(代表面積:0.015)							
①幅2c, 160RPM :							
上段	+14.84	0.4947	-13.63	-0.4543			
下段	-17.98	-0.5993	-10.28	0.3426			
②幅2c, 100RPM :							
上段	+0.1119	0.00373	-7.426	0.2475			
下段	-6.554	0.2185	-0.0766	0.0255			
③幅1.5c, 160RPM :							
上段	+5.806	0.1935	-7.4013	-0.2467			
下段	-15.78	-0.5260	0.4845	0.01615			
④幅1.5c, 100RPM :							
上段	+2.9588	0.0986	-17.60	0.6867			
下段	-4.4336	-0.1478	-11.065	0.3688			

32. 上段・下段翼列間の流れ

③幅1.5c, 160RPM

④幅1.5c, 100RPM

33. まとめ

2重反転翼列で構成される水車に関して移動境界CFDを 適用し、基本的な流れ性状を明らかにすると共に、計算 結果に基づき各ケースでの揚力、抗力を評価した。

・上段翼列と下段翼列はそれぞれアプローチ流れの向き が異なり、揚力・効力の発生で大きな差異が観察される
・翼間隔(幅)や翼の並進速度の影響は大きく、上段・下段 翼列でピッチを違えれば性能が向上する可能性がある。