

e-flow移動物体解析版の理論

e-flow移動物体解析版の機能

オブジェクト(動かす物体)の設定 初期位置・回転角の設定 時刻毎の移動距離・回転角の設定 物体の重心位置・重量の設定 (フリーモーション解析の場合) 可視化機能 時間変化アニメーショを含む

e-flowDXを立ち上げ、移動境界問題を選択

Geometryデータを読んで解析-1

既存データ読込みを選択

Geometryデータを読んで解析 - 2

読み込んだ形状を確認

Geometryを読んで解析 - 3

Geometryデータを読んで解析ー4

移動オブジェクトとMotion設定ダイアログが現れる

Geometryデータを読んで解析-5

各オブジェクト毎のモーションを確認

ここでは、オブジェクトが0~10 secの間にX軸方向に 150 m 直進運動(時速54 km) すると設定

「動作確認」ボタンで実際に動作を確認することが可能

MovingInfoの内容

#BeginMDL

// 車両モデル

#MovingObject 1 BeginBL 0 0.00 0.00 0 0 0 0.00 0.00 CADPointsAdd 12 先頭車02a.STL 1.000 1.000 1.000 1 0.00 EndBL

#EndMDL

#BeginOPN

#EndOPN

#BeginMotion

//	初期値設定 ^{initial}	Initial	Locatio	on x,y,z	Initial RotAng	le x,y,z Rate	TimeLag	Mass			
// //	nntiai 直線/円運動 Center x,y,z	time1	time2	Loca	tion x,y,z Ro	(-) t Angle x,y,z	Rot Cent	er x,y,z	Local Ro	t Angle x,y,z	Local Rot
//	moverotate	(sec)	(sec)	(m)	(deg)	(m)		(deg)		(m)	
#Mo Begi Mot Mot End	vingObject 1 inBL ion initial ion moverotate BL	-55.0 0.00 1	00 +1.7 0.000	2 0.00 +150.0	0.00 0.00 0.00 0.00 0.00 0.00	+1.00 0.00 -9 0.00 0.00 0.	9999.00 00 0.00 0.00	0 0.00	0.00 0.00	-99999.00 0.	00 0.00

#EndMotion

#EndAll

移動境界問題の設定方法8

境界条件定義

e-flowDXの扱える範囲での条件データ(吹出し吸込み, 熱伝達条件,濃度境界条件,湿度境界)を設定

e-flow 入力説明参照

• Vboun	:速度境界条件
• Vfix	:空間速度固定条件
· Hboun	:速度境界条件
· Hgene	:熱発生条件
· Cboun	:濃度境界条件
· Cgene	:濃度発生条件
· Mboun	:湿度境界条件
· Mgene	:湿度発生条件
· Pdrop	:抵抗則条件(開口率·抵抗係数)
 Initial 	:初期値設定

e-flow移動物体解析版 ケーススタディ

1.物体の回転

·撹拌槽解析

- 2.物体の平行移動
 - ·地下鉄構内走行解析
- 3.物体の回転と平行移動
 - ·電着塗装槽解析
- 4.物体のローカル回転 ・人体の歩行

ケーススタディ 撹拌槽解析

化学工学等で話題になる撹拌槽内の解析。 槽内の流動には邪魔板が重要な 役目を果たしている事が分かる ここではディスクタービン翼を用いた 撹拌翼にモーション(回転運動)を設定.

回転運動:3600deg/10sec (600R.P.M)

撹拌槽解析結果 ディスクタービン翼1

シミュレーション結果:速度ベクトル

撹拌槽解析結果 ディスクタービン翼2

シミュレーション結果:断面流速分布

ケーススタディ 地下鉄構内走行解析

列車が走行する地下鉄構内はプラットホームを中心に、長さ240.0m, 幅17.5m,高さ6.8mの空間とした。列車の大きさは、長さ17.0m,幅3.0m, 高さ4.5mと設定し、4両編成の車両が15.0m/sec(54km/h)で通過するも のとした。モデルの総格子数は、1080×66×35=2,722,312である。

地下鉄構内通過シミュレーション1

シミュレーション結果:速度分布

ケーススタディ 電着塗装槽解析 自動車の塗装に使われる電着塗装槽内の解析を行った。 ボディの運動は平行移動と回転の組み合わせ、

電着塗装槽シミュレーション2

シミュレーション結果:断面流速分布+速度ベクトル

電着塗装槽シミュレーション3

シミュレーション結果:速度ベクトルY断面(色は速度を示す)

電着塗装槽シミュレーション4

シミュレーション結果:Z断面速度ベクトル(色は速度を示す)

人体歩行シミュレーション1

シミュレーションの手順

1.解析モデル(固定部)の作成 10m × 8m × 3m

2.人体モデル(移動部)の作成 胴体,首,手,足

3.モーションの設定 平行移動,回転運動

4. シミュレーション実行

5. 結果の可視化 指定断面分布,ベクトル粒子,ボクセル

6.アニメーション作成

人体歩行シミュレーション2

Revit Architectureで形状を構築し、STL形式でインポート

人体歩行シミュレーション3

人体モデル各部位に、モーション(運動)を時刻毎に設定.

人体モデル 右手

人体モデル 右足

人体歩行シミュレーション4

シミュレーション結果:断面風速分布+速度ベクトル

人体歩行シミュレーション5

シミュレーション結果:非定常パーティクル(色は速度を示す)

人体歩行シミュレーション6

シミュレーション結果:Z断面速度ベクトル(色は速度を示す)

人体歩行シミュレーション6

シミュレーション結果:Z断面速度ベクトル(色は速度を示す)

